Expression profiling through high-throughput sequencing (RNA-seq) of 139 ALS patients and 21 healthy controls (HCs), from Tam et al. (2019).
alsData
alsData is a list of 4 objects:
"graph", ALS graph as the largest connected component of the "Amyotrophic lateral sclerosis (ALS)" pathway from KEGG database;
"exprs", a matrix of 160 rows (subjects) and 318 columns (genes) extracted from the original 17695. This subset includes genes from KEGG pathways, needed to run SEMgraph examples. Raw data from the GEO dataset GSE124439 (Tam et al., 2019) were pre-processed applying batch effect correction, using the sva R package (Leek et al., 2012), to remove data production center and brain area biases. Using multidimensional scaling-based clustering, ALS-specific and an HC-specific clusters were generated. Misclassified samples were blacklisted and removed from the current dataset;
"group", a binary group vector of 139 ALS subjects (1) and 21 healthy controls (0);
"details", a data.frame reporting information about included and blacklisted samples.
Tam OH, Rozhkov NV, Shaw R, Kim D et al. (2019). Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia. Cell Repprts, 29(5):1164-1177.e5. <https://doi.org/10.1016/j.celrep.2019.09.066>
Jeffrey T. Leek, W. Evan Johnson, Hilary S. Parker, Andrew E. Jaffe, and John D. Storey (2012). The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. Mar 15; 28(6): 882-883. <https://doi.org/10.1093/bioinformatics/bts034>
alsData$graph
#> IGRAPH 5d44052 DNW- 32 47 --
#> + attr: name (v/c), weight (e/n)
#> + edges from 5d44052 (vertex names):
#> [1] 6647 ->10452 6647 ->84134 6647 ->596 6647 ->4747 6647 ->79139
#> [6] 6647 ->5530 6647 ->5532 6647 ->5533 6647 ->5534 6647 ->5535
#> [11] 54205->842 7124 ->7132 7124 ->7133 581 ->54205 572 ->54205
#> [16] 596 ->54205 598 ->54205 317 ->842 842 ->836 7132 ->1616
#> [21] 7133 ->1616 1616 ->4217 4217 ->5606 4217 ->5608 5606 ->1432
#> [26] 5606 ->5600 5606 ->5603 5606 ->6300 5608 ->1432 5608 ->5600
#> [31] 5608 ->5603 5608 ->6300 1432 ->4747 1432 ->4741 1432 ->4744
#> [36] 5600 ->4747 5600 ->4741 5600 ->4744 5603 ->4747 5603 ->4741
#> + ... omitted several edges
dim(alsData$exprs)
#> [1] 160 318
table(alsData$group)
#>
#> 0 1
#> 21 139