Map groups of nodes onto an input graph, based on a membership vector.

cplot(graph, membership, l = layout.auto, map = FALSE, verbose = FALSE, ...)

Arguments

graph

An igraph object.

membership

Cluster membership vector for each node.

l

graph layout. One of the igraph layouts. If this argument is ignored, an automatic layout will be applied.

map

A logical value. Visualize cluster mapping over the input graph. If FALSE (default), visualization will be disabled. For large graphs, visualization may take long.

verbose

A logical value. If FALSE (default), the processed graphs will not be plotted to screen, saving execution time (they will be returned in output anyway).

...

Currently ignored.

Value

The list of clusters and cluster mapping as igraph objects.

Author

Mario Grassi mario.grassi@unipv.it

Examples


# \donttest{

# Clustering ALS graph with WTC method
G <- alsData$graph
membership <- clusterGraph(graph = G, type = "wtc")
#> modularity = 0.5588502 
#> 
#> Community sizes
#>  3  1  4  2 
#>  4  8  9 11 
#> 
cplot(G, membership, map = TRUE, verbose = FALSE)

cplot(G, membership, map = FALSE, verbose = TRUE)




# The list of cluster graphs !
cg <- cplot(G, membership); cg
#> $graph
#> IGRAPH 5d44052 DNW- 32 47 -- 
#> + attr: name (v/c), M (v/n), color (v/n), weight (e/n)
#> + edges from 5d44052 (vertex names):
#>  [1] 6647 ->10452 6647 ->84134 6647 ->596   6647 ->4747  6647 ->79139
#>  [6] 6647 ->5530  6647 ->5532  6647 ->5533  6647 ->5534  6647 ->5535 
#> [11] 54205->842   7124 ->7132  7124 ->7133  581  ->54205 572  ->54205
#> [16] 596  ->54205 598  ->54205 317  ->842   842  ->836   7132 ->1616 
#> [21] 7133 ->1616  1616 ->4217  4217 ->5606  4217 ->5608  5606 ->1432 
#> [26] 5606 ->5600  5606 ->5603  5606 ->6300  5608 ->1432  5608 ->5600 
#> [31] 5608 ->5603  5608 ->6300  1432 ->4747  1432 ->4741  1432 ->4744 
#> [36] 5600 ->4747  5600 ->4741  5600 ->4744  5603 ->4747  5603 ->4741 
#> + ... omitted several edges
#> 
#> $HM1
#> IGRAPH 5c86206 DNW- 8 7 -- 
#> + attr: name (v/c), M (v/n), color (v/n), weight (e/n)
#> + edges from 5c86206 (vertex names):
#> [1] 54205->842   581  ->54205 572  ->54205 596  ->54205 598  ->54205
#> [6] 317  ->842   842  ->836  
#> 
#> $HM2
#> IGRAPH 5c86351 DNW- 11 25 -- 
#> + attr: name (v/c), M (v/n), color (v/n), weight (e/n)
#> + edges from 5c86351 (vertex names):
#>  [1] 4217->5606 4217->5608 5606->1432 5606->5600 5606->5603 5606->6300
#>  [7] 5608->1432 5608->5600 5608->5603 5608->6300 1432->4747 1432->4741
#> [13] 1432->4744 5600->4747 5600->4741 5600->4744 5603->4747 5603->4741
#> [19] 5603->4744 6300->4747 6300->4741 6300->4744 5630->4747 5630->4741
#> [25] 5630->4744
#> 
#> $HM4
#> IGRAPH 5c86485 DNW- 9 8 -- 
#> + attr: name (v/c), M (v/n), color (v/n), weight (e/n)
#> + edges from 5c86485 (vertex names):
#> [1] 6647->10452 6647->84134 6647->79139 6647->5530  6647->5532  6647->5533 
#> [7] 6647->5534  6647->5535 
#> 
#> $HM9999
#> IGRAPH 5c8677a DNW- 4 4 -- 
#> + attr: name (v/c), M (v/n), color (v/n), weight (e/n)
#> + edges from 5c8677a (vertex names):
#> [1] 7124->7132 7124->7133 7132->1616 7133->1616
#> 

# }