Display a pairwise scatter plot of two datasets for a random selection of variables. If the second dataset is not given, the function displays a histogram with normal curve superposition.
pairwiseMatrix(x, y = NULL, size = nrow(x), r = 4, c = 4, ...)
A matrix or data.frame (n x p) of continuous data.
A matrix or data.frame (n x q) of continuous data.
number of rows to be sampled (default size = nrow(x)
).
number of rows of the plot layout (default r = 4
).
number of columns of the plot layout (default c = 4
).
Currently ignored.
No return value
adjdata <- SEMbap(sachs$graph, log(sachs$pkc))$data
#> DAG conversion : TRUE
#> Bow-free covariances search. Use method: cggm ...
#> Number of bow-free covariances / df : 4 / 37
#> Max parent set(S) / Sparsity idx(s) : 5 / 18
#> Number of clusters / number of nodes: 3 / 6
#>
rawdata <- log(sachs$pkc)
pairwiseMatrix(adjdata, rawdata, size = 1000)